
Differential Geometry Chapter 3

Curves

Given a curve α : I → Rn, we will misuse notation, calling both the

function and the image of the function the curve.

Definition 1 The speed function of α is

v(t) = ‖α′(t)‖ =

(
n∑
i=1

α′i(t)
2

)1/2

,

and ∫ b

a

‖α′ (t)‖ dt

is the arc-length of α from a to b.

Example 2 For the helix α(t) = (a cos t, a sin t, bt), with a > 0 and b 6= 0,

we have

α′(t) = (−a sin t, a cos t, b)α(t) .

Then

v(t) =
√
a2 + b2

and the arc-length from t = t0 to t1 is
√
a2 + b2 (t1 − t0) .

Definition 3 Let I, J be open intervals of R and α : I → Rn a curve. If

h : J → I is a differentiable function, then the reparametrization of α by

h is the curve β = α ◦ h : J → Rn.

We stated the Chain Rule earlier for scalar-valued functions. Thus the

following result follows immediately for the component functions βi = αi ◦h.

The stated result simply combines all these results.

Lemma 4

β′(t) = α′(h(t))h′(t) .

Definition 5 Let α : I → Rn be a curve. Then

i. α is a regular curve if α′(t) 6= 0 for all t ∈ I,
ii. α is a unit speed curve if v(t) = 1 for all t ∈ I.
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Theorem 6 If α is a regular curve in Rn then there exists a reparametriza-

tion β of α such that β has unit speed.

Proof Choose a ∈ I and let

s(t) =

∫ t

a

‖α′(u)‖ du,

the arc-length function. Since α is differentiable (i.e. in C∞) the integrand

‖α′(u)‖ is a continuous. So the Fundamental Theorem of Calculus says that

s(t) is differentiable (and thus continuous) with s′(t) = ‖α′(t)‖ for all t ∈ I.

Since ‖α′(u)‖ > 0 the integral s(t) is a strictly increasing differentiable

function. Thus the inverse function theorem states that Im s is an open

interval in R, J say, and s has an inverse, i.e. there exists a differentiable,

strictly increasing f : J → I such that f(s(t)) = t so all t ∈ I.

Let β(x) = α(f(x)) for x ∈ J . Then β′(x) = α′(f(x)) f ′(x) and so

‖β′(x)‖ = ‖α′(f(x))‖ f ′(x) since f ′ > 0

= s′(f(x)) f ′(x)

=
d

dx
s (f (x)) by the Chain Rule

=
d

dx
x = 1.

�

Example Helix α(t) = (a cos t, a sin t, bt), t ∈ R, when v(t) = (a2 + b2)
1/2

,

constant but not necessarily 1. Since 0 ∈ R we can start the integral at 0 in

s(t) =
∫ t
0
v(u) du = (a2 + b2)

1/2
t. Let f(x) = x (a2 + b2)

−1/2
. Then the unit

speed curve is

β(s) = (a cos (s/c) , a sin (s/c) , bs/c) , s

s ∈ R, where c = (a2 + b2)
1/2
.

Note that for a unit speed curve α(t) we have v(t) = 1 for all t, so s(t) =∫ t
a
‖α′(u)‖ du = t− a. So we can replace t by s, write α(s) for the curve and

say that it is parametrized by the arc-length.
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Frenet Formula

Let β : I → Rn be a unit speed curve so ‖β′(s)‖ = 1 for all s ∈ I.

Definition 7 T (s) = β′(s) is the unit tangent vector field on β,

T ′(s) is the curvature vector field of β,

k(s) = ‖T ′(s)‖ is the curvature function of β.

Always κ(s) ≥ 0 and the larger κ is, the greater the rate of change of β

in the direction of T ′.

Note that

T • T = β′ • β′ = ‖β′(s)‖2 = 1

since the curve is of unit speed. On differentiating T • T ′ = 0, i.e. T ′ is

orthogonal to T .

Assume κ(s) > 0 for all s ∈ I.

Definition 8 The principal normal vector field of β is

N = N(s) =
T ′(s)

κ(s)
=
β′′(s)

κ(s)

and

B = B(s) = T (s)×N(s)

is the binormal vector field of β.

By definition both T and N are of unit length while T • T ′ = 0 means

T •N = 0 so T and N are orthogonal. thus by an earlier result {T,N,B} is

a frame at each point of β.

Definition 9 {T,N,B} is the Frenet frame field on β.

Example 10 Let α(t) = (4 (cos t) /5, 1− sin t, −3 (cos t) /5) for t ∈ R.

Then α′(t) = (−4 (sin t) /5, − cos t, 3 (sin t) /5)α(t) for which ‖α′(t)‖ = 1

and so we have a unit speed curve. Thus T (t) = α′(t) .

Next α′′(t) = (−4 (cos t) /5, sin t, 3 (cos t) /5)α(t) and again ‖α′′(t)‖ = 1.

Thus κ(t) = 1 for all t and N(t) = α′′(t).
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Finally

B(t) = T (t)×N(t)

=

(
−3

2
cos2 t− 3

5
sin2 t, −12

5
cos t sin t+

12

5
sin t cos t, −4

5
sin2 t− 4

5
cos2 t

)
α(t)

=

(
−3

5
, 0, −4

5

)
α(t)

.

Note that in this example the binormal vector is independent of the point

of intersection. This is not such a surprise. The curve in question is the

intersection of the sphere (y − 1)2 + x2 + z2 = 1 with the plane 3x + 4z =

0. The binormal vector will be orthogonal to this plane, as is the vector

(−3, 0, −4) /5.

Question How does the Frenet Frame {T (s) , N(s) , B(s)} change as s changes?

Consider first B′(s). Since B is of unit length B • B = 1 and so, on

differentiating, B′ •B = 0.

Also, since {T,N,B} is a frame we have B • T = 0, and so, on again

differentiating, B′ • T + B • T ′ = 0. But B • T ′ = κB • N = 0 hence

B′ • T = 0.

Thus, since {T,N,B} is a frame,

B′ = (B′ • T )T + (B′ •N)N + (B′ •B)B = (B′ •N)N.

Definition 11 Define τ : I → R by B′(s) = −τ(s)N(s) , the torsion func-

tion of β . Note the −ve sign.

Example As noted before β(s) = (a cos (s/c) , a sin (s/c) , bs/c), s ∈ R,

where c = (a2 + b2)
1/2

is a unit speed curve. Assume a > 0.

β′(s) =

(
−a
c

sin
(s
c

)
,
a

c
cos
(s
c

)
,
b

c

)
β(s)

= T (s) ,

T ′(s) =
(
− a
c2

cos
(s
c

)
, − a

c2
sin
(s
c

)
, 0
)
β(s)

=
a

c2

(
− cos

(s
c

)
, − sin

(s
c

)
, 0
)
β(s)

.
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So κ(s) = a/c2. So N (s) = (− cos (s/c) , − sin (s/c) , 0)β(s) and then

B(s) = T (s)×N(s)

=

(
−a
c

sin
(s
c

)
,
a

c
cos
(s
c

)
,
b

c

)
β(s)

×
(
− cos

(s
c

)
, − sin

(s
c

)
, 0
)
β(s)

=

(
b

c
sin
(s
c

)
,− b

c
cos
(s
c

)
,
a

c

)
β(s)

.

Finally,

B′(s) =

(
b

c2
cos
(s
c

)
,
b

c2
sin
(s
c

)
, 0

)
β(s)

= − b

c2
N(s) .

Therefore τ(s) = b/c2. �

The important observation to take away from this example is that for a

helix both the curvature and torsion are constant.

Theorem 12 Frenet Formula Let β be a unit speed curve with κ(s) > 0

for all s ∈ I. Then

T ′(s) = κ(s)N(s) ,

N ′(s) = −κ(s)T (s) +τ(s)B(s) ,

B′(s) = −τ(s)N(s) .

Proof Only the second result here is new. Again since {T,N,B} is a frame,

N ′ = (N ′ • T )T + (N ′ •N)N + (N ′ •B)B.

From N •N = 1 we have N ′ •N = 0.

From N •T = 0 we have N ′ •T +N •T ′ = 0, i.e. N ′ •T +N • (κN) = 0.

Thus N ′ • T = −κ.
Similarly, from N •B = 0 we have N ′ •B+N •B′ = 0, i.e. N ′ •B−N •

(τN) = 0. Thus N ′ •B = τ .

Combining we get the required result. �

The plane containing T & B is the rectifying plane, that containing N

& B the normal plane and that containing T & N the osculating plane.
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Question what do κ and τ represent?

Consider the unit speed curve β (s). Taylor’s expansion states that, for s

sufficiently small,

β(s) = β(0) + β′(0) s+ β′′(0)
s2

2
+ β′′′(0)

s3

3!
+ ....

Here β′(0) = T (0) and β′′(0) = T ′(0) = κ(0)N(0). Also

β′′′(0) =
d

ds
(κ(s)N(s))

∣∣∣∣
s=0

= κ′(0)N(0) + κ(0)N ′(0)

= κ′(0)N(0) + κ(0) (−κ(0)T (0) + τ(0)B(0))

Substituting back,

β(s) ≈ β(0)+

(
s− κ2(0)

6
s3
)
T (0)+

(
κ(0)

s2

2
+ κ′(0)

s3

6

)
N(0)+κ(0) τ(0)

s3

6
B(0) .

(1)

So a first approximation to β(s) is the tangent line β(0) + sT (0). The

second is the parabola

β(0) + sT (0) + κ(0)
s2

2
N(0) . (2)

Thus κ(0) controls how fast the curve diverges from the straight line in the

direction of N(0) (how much it bends). Note that as s varies, the curve (2)

lies in the plane β(0) + span {T (0) , N(0)}, the osculating plane mentioned

before. We say that the osculating plane is the best approximating plane to

β at β(0).

If we had more time we would talk about the osculating circle, and the

evolute and involute curves. But we don’t!

The third approximation is the cubic (1). Hence τ(0) controls how fast

the curve leaves the {T (0) , N(0)} plane (or how much the curve twists.).

Question If τ(s) = 0 for all s does the curve remain in the {T (0) , N(0)}
plane? (If so we say, unsurprisingly, that the curve is planar.)

Lemma 13 Let β be a unit speed curve with κ(s) > 0 for all s ∈ I. Then β

is planar iff τ(s) = 0 for all s ∈ I.
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Proof (=⇒) If β is planar then there exist points p and normal vector n,

such that (β(s)− p) • n = 0. Differentiating two times

β′(s) • n = β′′(s) • n = 0, i.e. T (s) • n = κ(s)N(s) • n = 0

for all s. This means that n is orthogonal to both T (s) and N(s) for all s.

Yet B(s) is also orthogonal to both T (s) and N(s) and so B(s) = ±n/ ‖n‖
for all s. (This steps uses the fact that we have only 3 dimensions.) Therefore

B′(s) = 0, i.e. τ(s) = 0 for all s.

(⇐=) Assuming τ(s) = 0 for all s means B′(s) = 0, i.e. B(s) is constant for

all s. Claim (β(s)− β(0)) •B(s) = 0, i.e. β is planar.

Let f(s) = (β(s)− β(0))•B(s). Then f́ ′(s) = β′(s)•B(s) = T (s)•B(s) =

0. So f(s) is constant. Yet f (0) = 0 so f(s) = 0 for all s as claimed.

�

Example 14 In the earlier example of α(t) = (4 (cos t) /5, 1− sin t, −3 (cos t) /5)

for t ∈ R we found B(t) =
(
−3

5
, 0, −4

5

)
α(t)

. Thus B′(t) = (0, 0, 0)α(t) in

which case τ(t) = 0 for all t and the curve is planar.

Further, from the proof of the lemma, the curve lies in the plane (x− α (0))•
B (t) = 0. That is,(

x− 4

5
, y − 1, z +

3

5

)
•
(
−3

5
, 0, −4

5

)
= 0,

or 3x+ 4z = 0.

In this example we also found that κ(t) = 1 for all t. This is a special

case of

Lemma 15 If τ ≡ 0 and κ(s) is constant then β is part of a circle.

Proof By Lemma 13, τ ≡ 0 means that β is planar. Consider the curve

γ(s) = β(s) +
1

κ
N(s) , (3)
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where κ = κ(s). Then, since κ is constant,

γ′(s) = β′(s) +
1

k
N ′(s)

= T (s) +
1

κ
(−κ(s)T (s) + τ(s)B(s))

= 0.

Thus γ (s) is constant, i.e. equal to some p ∈ Rn. Then, rearranging (3) and

taking norms,

‖β(s)− p‖ =
1

κ
‖N(s)‖ =

1

κ
,

i.e. β(s) lies on a circle, centre p, radius 1/κ. �

Example 16 In the earlier example of α(t) = (4 (cos t) /5, 1− sin t, −3 (cos t) /5)

for t ∈ R we found that N(t) = (−4 (cos t) /5, sin t, 3 (cos t) /5)α(t) and

κ(t) = 1 for all t. Thus α(t) lies on the circle or radius 1, centre

α(0) +
1

κ
N(0) =

(
4

5
, 1, −3

5

)
+

(
−4

5
, 0,

3

5

)
= (0, 1, 0) .

Instead of lying in a circle what if the curve lies in the surface of a sphere?

Lemma 17 If the image of the unit speed α : I → Rn lies within the surface

of a sphere, then κ(t) 6= 0 and

ρ2 + (ρ′σ)
2

= r2,

where r is the radius of the sphere, ρ (t) = 1/κ(t) and σ(t) = 1/τ(t) .

Proof That α lies on the surface of a sphere means there is a point c ∈ Rn

and radius r > 0 such that

(α(t)− c) • (α(t)− c) = r2

for all t ∈ I. For simplicity I drop the dependency on t from my expressions.

The first differentiation gives α′ • (α− c) = 0, i.e.

T • (α− c) = 0. (4)
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Differentiate again, T ′ • (α− c)+T •T = 0 i.e. κN • (α− c) = −1. Thus

κ 6= 0 and

N • (α− c) = −ρ. (5)

Differentiate again, N ′ • (α− c) +N •α′ = −ρ′. But N •α′ = N • T = 0

while N ′ = −κT + τB. Thus (−κT + τB) • (α− c) = −ρ′. Yet, from above,

T • (α− c) = 0, so τB • (α− c) = −ρ′, i.e.

B • (α− c) = −σρ′. (6)

Since {T,N,B} is a frame,

α− c = ((α− c) • T )T + ((α− c) •N)N + ((α− c) •B)B

= −ρN − σρ′B.

by (4) , (5) and (6). Returning to the definition of a sphere

r2 = (−ρN − σρ′B) • (−ρN − σρ′B)

= ρ2N •N + (σρ′)
2
B •B

= ρ2 + (σρ′)
2
.

�

Why are κ and τ of interest?

There are perhaps many answers to this question but I’m interested in the

fact that a “unit speed curve is uniquely determined by the pair of functions

(κ(t) , τ(t)) , up to position in R3”.

The map between the same object in different positions is the following.

Definition 18 A map F : R3 → R3 is an isometry if ‖F (x)− F (y)‖ =

‖x− y‖ for all x,y ∈ R3.

There are four basic isometries, reflection; glide reflection; rotation and

translation Isometries are given by an affine map x 7→ a +Ax, with a ∈ R3

and 3×3 orthogonal matrix A, so ATA = I3. The uniqueness result is
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Theorem 19 If α, β : I → R3 are unit speed curves with (κα(t) , τα(t)) =

(κβ(t) , τβ(t)) for all t ∈ I then there exists an isometry F : R3 → R3 such

that β = F ◦ α.

Proof not given, but the isometry is constructed by mapping the Frenet

Frame on α at time t to the Frenet Frame on β at the same time. �

Example If a unit speed curve α : I → R3 has constant curvature and

torsion then it is a helix of the form β(s) = (a cos (s/c) , a sin (s/c) , bs/c) for

some a, b ∈ R.

Another fundamental result is one of existence .

Theorem 20 Given differentiable functions κ(s) > 0 and τ(s), s ∈ I, there

exists a regular curve α : I → R3 such that s is the arc-length, κ(s) is the

curvature and τ(s) the torsion of α.

Proof not given, but involves the existence and uniqueness of ordinary dif-

ferential equations. �

Arbitrary Speed Curves

If α(t) is not of unit speed we can find the arc-length parameter s(t) and

β(s) a unit speed curve satisfying β(s(t)) = α(t) .

Calculate Tβ(s) , Nβ(s) , Bβ(s) , κβ(s) and τβ(s) for β (s). Then {Tβ(s) , Nβ(s) , Bβ(s)}
is a frame for β for all s.

Write T (t) = Tβ(s(t)) , N(t) = Nβ(s(t)) , B(t) = Bβ(s(t)) , κ(t) =

κβ(s(t)) and τ(t) = τβ(s(t)). Then {T (t) , N(t) , B(t)} is a frame for α all t.

To see how this frame for α transforms as t varies,

d

dt
T (t) =

d

ds
Tβ(s)

d

dt
s(t) = κβ(s)Nβ(s) v(t) = κ(t)N(t) v(t) ,

having used the Frenet formula for unit speed curves, Theorem 12. And

d

dt
N(t) =

d

ds
Nβ(s)

d

dt
s(t) = (−κβ(s)Tβ(s) + τβ(s)Bβ(s)) v(t)

= (−κ(t)T (t) + τ(t)B(t)) v(t) .
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Finally
d

dt
B(t)− τ(t)N(t) v(t) .

So, for an arbitrary speed curve the Frenet formula become

T ′(t) = κ(t) v(t)N(t) ,

N ′(t) = −κ(t) v(t)T (t) +τ(t) v(t)B(t) ,

B′(t) = −τ(t) v(t)N(t) .

Calculations

When it comes to calculations we can quickly differentiate the given α(t)

but how to use these derivatives to calculate the T,N,B, κ and τ?

First

α′(t) =
d

ds
β(s)

d

dt
s(t) = Tβ(s(t)) v(t) = T (t) v(t) .

Yet T is of unit length so T = α′(t) / ‖α′(t)‖.

Continue differentiating,

α′′(t) =
d

dt
Tβ(s(t)) v(t) + T (t) v′(t)

= κβ(s(t))Nβ(s(t)) v2(t) + T (t) v′(t)

= κ(t)N(t) v2(t) + T (t) v′(t) .

This shows that the acceleration of α(t) has a tangential component, the

T (t) v′(t) term, and a normal component proportional to the square of ve-

locity and to the curvature of the curve..

Next, again dropping the dependency on t for ease of notation,

α′×α′′ = (Tv)×
(
κNv2 + Tv′

)
= κv3B,

since B = T ×N and T ×T = 0. Yet B is of unit length so B = α′×
α′′/ ‖α′×α′′‖ . And for the same reason, κv3 = ‖α′×α′′‖, and thus

κ =
‖α′×α′′‖
‖α′‖3

.

Find N from N = B×T = (α′×α′′)×α′/ ‖(α′×α′′)×α′‖.
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For the final derivative we have

α′′′ =
(
κv2
)′
N + κv2N ′ + v′′T + v′T ′

=
(
κv2
)′
N + κv2 (−κvT + τvB) + v′′T + v′κvN

=
(
v′′ − κ2v3

)
T +

((
κv2
)′

+ v′κv
)
N + κτv3B.

We only need to know the coefficient of B here, since

(α′×α′′) • α′′′ = κ2τv6.

Hence

τ =
‖(α′×α′′) • α′′′‖
‖α′×α′′‖2

,

since, from earlier, κv3 = ‖α′×α′′‖ .

Example 21 Find T,N,B, κ and τ for the curve

α (t) = (a cos t, a sin t, d sin t) ,

t ∈ R.

Solution First α′ (t) = (−a sin t, a cos t, d cos t)α(t) so ‖α′ (t)‖ = (a2 + d2 cos2 t)
1/2
.

Continuing,

α′′ (t) = (−a cos t, −a sin t, −d sin t)α(t)

α′′′ (t) = (a sin t, −a cos t, −d cos t)α(t) .

Then α′×α′′ = (0,−ad, a2)α(t) and ‖α′×α′′‖ = a (a2 + d2)
1/2

.

For N we need

(α′×α′′)×α′ =
(
0,−ad, a2

)
α(t)
×(−a sin t, a cos t, d cos t)α(t)

=
((
−ad2 − a3

)
cos t,−a3 sin t,−a2d sin t

)
α(t)

.

Then

‖(α′×α′′)×α′‖2 =
(
ad2 + a3

)2
cos2 t+

(
a6 + a4d2

)
sin2 t

= a2
(
a2 + d2

) ((
a2 + d2

)
cos2 t+ a2 sin2 t

)
= a2

(
a2 + d2

) (
a2 + d2 cos2 t

)
.
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Next, (α′×α′′) • α′′′ = a2d cos t− a2d cos t = 0.

Putting these results together,

T =
α′ (t)

‖α′ (t)‖
=

(−a sin t, a cos t, d cos t)α(t)

(a2 + d2 cos2 t)1/2
,

N =
(α′×α′′)×α′

‖(α′×α′′)×α′‖
=

((−ad2 − a3) cos t, −a3 sin t, −a2d sin t)α(t)

a (a2 + d2)1/2 (a2 + d2 cos2 t)1/2
,

B =
α′×α′′

‖α′×α′′‖
=

(0, −ad, a2)α(t)
a (a2 + d2)1/2

,

κ =
‖α′×α′′‖
‖α′‖3

=
a (a2 + d2)

1/2

(a2 + d2 cos2 t)3/2
,

and

τ =
‖(α′×α′′) • α′′′‖
‖α′×α′′‖2

= 0,

i.e. the curve is planar. (By observation it lies in the plane dy − az = 0.)

Finally
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