Differential Geometry Chapter 3

Curves

Given a curve $\alpha: I \rightarrow \mathbb{R}^{n}$, we will misuse notation, calling both the function and the image of the function the curve.

Definition 1 The speed function of α is

$$
v(t)=\left\|\alpha^{\prime}(t)\right\|=\left(\sum_{i=1}^{n} \alpha_{i}^{\prime}(t)^{2}\right)^{1 / 2}
$$

and

$$
\int_{a}^{b}\left\|\alpha^{\prime}(t)\right\| d t
$$

is the arc-length of α from a to b.

Example 2 For the helix $\alpha(t)=(a \cos t, a \sin t, b t)$, with $a>0$ and $b \neq 0$, we have

$$
\alpha^{\prime}(t)=(-a \sin t, a \cos t, b)_{\alpha(t)} .
$$

Then

$$
v(t)=\sqrt{a^{2}+b^{2}}
$$

and the arc-length from $t=t_{0}$ to t_{1} is $\sqrt{a^{2}+b^{2}}\left(t_{1}-t_{0}\right)$.
Definition 3 Let I, J be open intervals of \mathbb{R} and $\alpha: I \rightarrow \mathbb{R}^{n}$ a curve. If $h: J \rightarrow I$ is a differentiable function, then the reparametrization of $\alpha \boldsymbol{b} \boldsymbol{y}$ h is the curve $\beta=\alpha \circ h: J \rightarrow \mathbb{R}^{n}$.

We stated the Chain Rule earlier for scalar-valued functions. Thus the following result follows immediately for the component functions $\beta^{i}=\alpha^{i} \circ h$. The stated result simply combines all these results.

Lemma 4

$$
\beta^{\prime}(t)=\alpha^{\prime}(h(t)) h^{\prime}(t) .
$$

Definition 5 Let $\alpha: I \rightarrow \mathbb{R}^{n}$ be a curve. Then
i. α is a regular curve if $\alpha^{\prime}(t) \neq \mathbf{0}$ for all $t \in I$,
ii. α is a unit speed curve if $v(t)=1$ for all $t \in I$.

Theorem 6 If α is a regular curve in \mathbb{R}^{n} then there exists a reparametrization β of α such that β has unit speed.

Proof Choose $a \in I$ and let

$$
s(t)=\int_{a}^{t}\left\|\alpha^{\prime}(u)\right\| d u
$$

the arc-length function. Since α is differentiable (i.e. in C^{∞}) the integrand $\left\|\alpha^{\prime}(u)\right\|$ is a continuous. So the Fundamental Theorem of Calculus says that $s(t)$ is differentiable (and thus continuous) with $s^{\prime}(t)=\left\|\alpha^{\prime}(t)\right\|$ for all $t \in I$.

Since $\left\|\alpha^{\prime}(u)\right\|>0$ the integral $s(t)$ is a strictly increasing differentiable function. Thus the inverse function theorem states that $\operatorname{Im} s$ is an open interval in \mathbb{R}, J say, and s has an inverse, i.e. there exists a differentiable, strictly increasing $f: J \rightarrow I$ such that $f(s(t))=t$ so all $t \in I$.

Let $\beta(x)=\alpha(f(x))$ for $x \in J$. Then $\beta^{\prime}(x)=\alpha^{\prime}(f(x)) f^{\prime}(x)$ and so

$$
\begin{aligned}
\left\|\beta^{\prime}(x)\right\| & =\left\|\alpha^{\prime}(f(x))\right\| f^{\prime}(x) \quad \text { since } f^{\prime}>0 \\
& =s^{\prime}(f(x)) f^{\prime}(x) \\
& =\frac{d}{d x} s(f(x)) \quad \text { by the Chain Rule } \\
& =\frac{d}{d x} x=1
\end{aligned}
$$

Example Helix $\alpha(t)=(a \cos t, a \sin t, b t), t \in \mathbb{R}$, when $v(t)=\left(a^{2}+b^{2}\right)^{1 / 2}$, constant but not necessarily 1 . Since $0 \in \mathbb{R}$ we can start the integral at 0 in $s(t)=\int_{0}^{t} v(u) d u=\left(a^{2}+b^{2}\right)^{1 / 2} t$. Let $f(x)=x\left(a^{2}+b^{2}\right)^{-1 / 2}$. Then the unit speed curve is

$$
\beta(s)=(a \cos (s / c), a \sin (s / c), b s / c), s
$$

$s \in \mathbb{R}$, where $c=\left(a^{2}+b^{2}\right)^{1 / 2}$.
Note that for a unit speed curve $\alpha(t)$ we have $v(t)=1$ for all t, so $s(t)=$ $\int_{a}^{t}\left\|\alpha^{\prime}(u)\right\| d u=t-a$. So we can replace t by s, write $\alpha(s)$ for the curve and say that it is parametrized by the arc-length.

Frenet Formula

Let $\beta: I \rightarrow \mathbb{R}^{n}$ be a unit speed curve so $\left\|\beta^{\prime}(s)\right\|=1$ for all $s \in I$.
Definition $7 T(s)=\beta^{\prime}(s)$ is the unit tangent vector field on β, $T^{\prime}(s)$ is the curvature vector field of β, $k(s)=\left\|T^{\prime}(s)\right\|$ is the curvature function of β.

Always $\kappa(s) \geq 0$ and the larger κ is, the greater the rate of change of β in the direction of T^{\prime}.

Note that

$$
T \bullet T=\beta^{\prime} \bullet \beta^{\prime}=\left\|\beta^{\prime}(s)\right\|^{2}=1
$$

since the curve is of unit speed. On differentiating $T \bullet T^{\prime}=0$, i.e. T^{\prime} is orthogonal to T.

Assume $\kappa(s)>0$ for all $s \in I$.
Definition 8 The principal normal vector field of β is

$$
N=N(s)=\frac{T^{\prime}(s)}{\kappa(s)}=\frac{\beta^{\prime \prime}(s)}{\kappa(s)}
$$

and

$$
B=B(s)=T(s) \times N(s)
$$

is the binormal vector field of β.
By definition both T and N are of unit length while $T \bullet T^{\prime}=0$ means $T \bullet N=0$ so T and N are orthogonal. thus by an earlier result $\{T, N, B\}$ is a frame at each point of β.

Definition $9\{T, N, B\}$ is the Frenet frame field on β.
Example 10 Let $\alpha(t)=(4(\cos t) / 5,1-\sin t,-3(\cos t) / 5)$ for $t \in \mathbb{R}$.
Then $\alpha^{\prime}(t)=(-4(\sin t) / 5,-\cos t, 3(\sin t) / 5)_{\alpha(t)}$ for which $\left\|\alpha^{\prime}(t)\right\|=1$ and so we have a unit speed curve. Thus $T(t)=\alpha^{\prime}(t)$.

Next $\alpha^{\prime \prime}(t)=(-4(\cos t) / 5, \sin t, 3(\cos t) / 5)_{\alpha(t)}$ and again $\left\|\alpha^{\prime \prime}(t)\right\|=1$. Thus $\kappa(t)=1$ for all t and $N(t)=\alpha^{\prime \prime}(t)$.

Finally

$$
\begin{aligned}
B(t) & =T(t) \times N(t) \\
& =\left(-\frac{3}{2} \cos ^{2} t-\frac{3}{5} \sin ^{2} t,-\frac{12}{5} \cos t \sin t+\frac{12}{5} \sin t \cos t,-\frac{4}{5} \sin ^{2} t-\frac{4}{5} \cos ^{2} t\right)_{\alpha(t)} \\
& =\left(-\frac{3}{5}, 0,-\frac{4}{5}\right)_{\alpha(t)} .
\end{aligned}
$$

Note that in this example the binormal vector is independent of the point of intersection. This is not such a surprise. The curve in question is the intersection of the sphere $(y-1)^{2}+x^{2}+z^{2}=1$ with the plane $3 x+4 z=$ 0 . The binormal vector will be orthogonal to this plane, as is the vector $(-3,0,-4) / 5$.
Question How does the Frenet Frame $\{T(s), N(s), B(s)\}$ change as s changes?
Consider first $B^{\prime}(s)$. Since B is of unit length $B \bullet B=1$ and so, on differentiating, $B^{\prime} \bullet B=0$.

Also, since $\{T, N, B\}$ is a frame we have $B \bullet T=0$, and so, on again differentiating, $B^{\prime} \bullet T+B \bullet T^{\prime}=0$. But $B \bullet T^{\prime}=\kappa B \bullet N=0$ hence $B^{\prime} \bullet T=0$.

Thus, since $\{T, N, B\}$ is a frame,

$$
B^{\prime}=\left(B^{\prime} \bullet T\right) T+\left(B^{\prime} \bullet N\right) N+\left(B^{\prime} \bullet B\right) B=\left(B^{\prime} \bullet N\right) N .
$$

Definition 11 Define $\tau: I \rightarrow \mathbb{R}$ by $B^{\prime}(s)=-\tau(s) N(s)$, the torsion function of β. Note the $-v e$ sign.

Example As noted before $\beta(s)=(a \cos (s / c), a \sin (s / c), b s / c), s \in \mathbb{R}$, where $c=\left(a^{2}+b^{2}\right)^{1 / 2}$ is a unit speed curve. Assume $a>0$.

$$
\begin{aligned}
\beta^{\prime}(s) & =\left(-\frac{a}{c} \sin \left(\frac{s}{c}\right), \frac{a}{c} \cos \left(\frac{s}{c}\right), \frac{b}{c}\right)_{\beta(s)}=T(s), \\
T^{\prime}(s) & =\left(-\frac{a}{c^{2}} \cos \left(\frac{s}{c}\right),-\frac{a}{c^{2}} \sin \left(\frac{s}{c}\right), 0\right)_{\beta(s)} \\
& =\frac{a}{c^{2}}\left(-\cos \left(\frac{s}{c}\right),-\sin \left(\frac{s}{c}\right), 0\right)_{\beta(s)}
\end{aligned}
$$

So $\kappa(s)=a / c^{2}$. So $N(s)=(-\cos (s / c),-\sin (s / c), 0)_{\beta(s)}$ and then

$$
\begin{aligned}
B(s) & =T(s) \times N(s) \\
& =\left(-\frac{a}{c} \sin \left(\frac{s}{c}\right), \frac{a}{c} \cos \left(\frac{s}{c}\right), \frac{b}{c}\right)_{\beta(s)} \times\left(-\cos \left(\frac{s}{c}\right),-\sin \left(\frac{s}{c}\right), 0\right)_{\beta(s)} \\
& =\left(\frac{b}{c} \sin \left(\frac{s}{c}\right),-\frac{b}{c} \cos \left(\frac{s}{c}\right), \frac{a}{c}\right)_{\beta(s)}
\end{aligned}
$$

Finally,

$$
B^{\prime}(s)=\left(\frac{b}{c^{2}} \cos \left(\frac{s}{c}\right), \frac{b}{c^{2}} \sin \left(\frac{s}{c}\right), 0\right)_{\beta(s)}=-\frac{b}{c^{2}} N(s) .
$$

Therefore $\tau(s)=b / c^{2}$.
The important observation to take away from this example is that for a helix both the curvature and torsion are constant.

Theorem 12 Frenet Formula Let β be a unit speed curve with $\kappa(s)>0$ for all $s \in I$. Then

$$
\begin{array}{lll}
T^{\prime}(s)= & \kappa(s) N(s), & \\
N^{\prime}(s)=-\kappa(s) T(s) & & +\tau(s) B(s), \\
B^{\prime}(s)= & -\tau(s) N(s) . &
\end{array}
$$

Proof Only the second result here is new. Again since $\{T, N, B\}$ is a frame,

$$
N^{\prime}=\left(N^{\prime} \bullet T\right) T+\left(N^{\prime} \bullet N\right) N+\left(N^{\prime} \bullet B\right) B .
$$

From $N \bullet N=1$ we have $N^{\prime} \bullet N=0$.
From $N \bullet T=0$ we have $N^{\prime} \bullet T+N \bullet T^{\prime}=0$, i.e. $N^{\prime} \bullet T+N \bullet(\kappa N)=0$. Thus $N^{\prime} \bullet T=-\kappa$.

Similarly, from $N \bullet B=0$ we have $N^{\prime} \bullet B+N \bullet B^{\prime}=0$, i.e. $N^{\prime} \bullet B-N \bullet$ $(\tau N)=0$. Thus $N^{\prime} \bullet B=\tau$.

Combining we get the required result.
The plane containing $T \& B$ is the rectifying plane, that containing N \& B the normal plane and that containing $T \& N$ the osculating plane.

Question what do κ and τ represent?
Consider the unit speed curve $\beta(s)$. Taylor's expansion states that, for s sufficiently small,

$$
\beta(s)=\beta(0)+\beta^{\prime}(0) s+\beta^{\prime \prime}(0) \frac{s^{2}}{2}+\beta^{\prime \prime \prime}(0) \frac{s^{3}}{3!}+\ldots
$$

Here $\beta^{\prime}(0)=T(0)$ and $\beta^{\prime \prime}(0)=T^{\prime}(0)=\kappa(0) N(0)$. Also

$$
\begin{aligned}
\beta^{\prime \prime \prime}(0) & =\left.\frac{d}{d s}(\kappa(s) N(s))\right|_{s=0}=\kappa^{\prime}(0) N(0)+\kappa(0) N^{\prime}(0) \\
& =\kappa^{\prime}(0) N(0)+\kappa(0)(-\kappa(0) T(0)+\tau(0) B(0))
\end{aligned}
$$

Substituting back,
$\beta(s) \approx \beta(0)+\left(s-\frac{\kappa^{2}(0)}{6} s^{3}\right) T(0)+\left(\kappa(0) \frac{s^{2}}{2}+\kappa^{\prime}(0) \frac{s^{3}}{6}\right) N(0)+\kappa(0) \tau(0) \frac{s^{3}}{6} B(0)$.
So a first approximation to $\beta(s)$ is the tangent line $\beta(0)+s T(0)$. The second is the parabola

$$
\begin{equation*}
\beta(0)+s T(0)+\kappa(0) \frac{s^{2}}{2} N(0) . \tag{2}
\end{equation*}
$$

Thus $\kappa(0)$ controls how fast the curve diverges from the straight line in the direction of $N(0)$ (how much it bends). Note that as s varies, the curve (2) lies in the plane $\beta(0)+\operatorname{span}\{T(0), N(0)\}$, the osculating plane mentioned before. We say that the osculating plane is the best approximating plane to β at $\beta(0)$.

If we had more time we would talk about the osculating circle, and the evolute and involute curves. But we don't!

The third approximation is the cubic (1). Hence $\tau(0)$ controls how fast the curve leaves the $\{T(0), N(0)\}$ plane (or how much the curve twists.).

Question If $\tau(s)=0$ for all s does the curve remain in the $\{T(0), N(0)\}$ plane? (If so we say, unsurprisingly, that the curve is planar.)

Lemma 13 Let β be a unit speed curve with $\kappa(s)>0$ for all $s \in I$. Then β is planar iff $\tau(s)=0$ for all $s \in I$.

Proof (\Longrightarrow) If β is planar then there exist points \mathbf{p} and normal vector \mathbf{n}, such that $(\beta(s)-\mathbf{p}) \bullet \mathbf{n}=0$. Differentiating two times

$$
\beta^{\prime}(s) \bullet \mathbf{n}=\beta^{\prime \prime}(s) \bullet \mathbf{n}=0, \quad \text { i.e. } \quad T(s) \bullet \mathbf{n}=\kappa(s) N(s) \bullet \mathbf{n}=0
$$

for all s. This means that \mathbf{n} is orthogonal to both $T(s)$ and $N(s)$ for all s. Yet $B(s)$ is also orthogonal to both $T(s)$ and $N(s)$ and so $B(s)= \pm \mathbf{n} /\|\mathbf{n}\|$ for all s. (This steps uses the fact that we have only 3 dimensions.) Therefore $B^{\prime}(s)=0$, i.e. $\tau(s)=0$ for all s.
(\Longleftarrow) Assuming $\tau(s)=0$ for all s means $B^{\prime}(s)=0$, i.e. $B(s)$ is constant for all s. Claim $(\beta(s)-\beta(0)) \bullet B(s)=0$, i.e. β is planar.

Let $f(s)=(\beta(s)-\beta(0)) \bullet B(s)$. Then $f^{\prime}(s)=\beta^{\prime}(s) \bullet B(s)=T(s) \bullet B(s)=$ 0 . So $f(s)$ is constant. Yet $f(0)=0$ so $f(s)=0$ for all s as claimed.

Example 14 In the earlier example of $\alpha(t)=(4(\cos t) / 5,1-\sin t,-3(\cos t) / 5)$ for $t \in \mathbb{R}$ we found $B(t)=\left(-\frac{3}{5}, 0,-\frac{4}{5}\right)_{\alpha(t)}$. Thus $B^{\prime}(t)=(0,0,0)_{\alpha(t)}$ in which case $\tau(t)=0$ for all t and the curve is planar.

Further, from the proof of the lemma, the curve lies in the plane $(\mathbf{x}-\alpha(0)) \cdot$ $B(t)=0$. That is,

$$
\left(x-\frac{4}{5}, y-1, z+\frac{3}{5}\right) \cdot\left(-\frac{3}{5}, 0,-\frac{4}{5}\right)=0,
$$

or $3 x+4 z=0$.
In this example we also found that $\kappa(t)=1$ for all t. This is a special case of

Lemma 15 If $\tau \equiv 0$ and $\kappa(s)$ is constant then β is part of a circle.
Proof By Lemma 13, $\tau \equiv 0$ means that β is planar. Consider the curve

$$
\begin{equation*}
\gamma(s)=\beta(s)+\frac{1}{\kappa} N(s), \tag{3}
\end{equation*}
$$

where $\kappa=\kappa(s)$. Then, since κ is constant,

$$
\begin{aligned}
\gamma^{\prime}(s) & =\beta^{\prime}(s)+\frac{1}{k} N^{\prime}(s) \\
& =T(s)+\frac{1}{\kappa}(-\kappa(s) T(s)+\tau(s) B(s)) \\
& =0
\end{aligned}
$$

Thus $\gamma(s)$ is constant, i.e. equal to some $\mathbf{p} \in \mathbb{R}^{n}$. Then, rearranging (3) and taking norms,

$$
\|\beta(s)-\mathbf{p}\|=\frac{1}{\kappa}\|N(s)\|=\frac{1}{\kappa},
$$

i.e. $\beta(s)$ lies on a circle, centre \mathbf{p}, radius $1 / \kappa$.

Example 16 In the earlier example of $\alpha(t)=(4(\cos t) / 5,1-\sin t,-3(\cos t) / 5)$ for $t \in \mathbb{R}$ we found that $N(t)=(-4(\cos t) / 5, \sin t, 3(\cos t) / 5)_{\alpha(t)}$ and $\kappa(t)=1$ for all t. Thus $\alpha(t)$ lies on the circle or radius 1 , centre

$$
\alpha(0)+\frac{1}{\kappa} N(0)=\left(\frac{4}{5}, 1,-\frac{3}{5}\right)+\left(-\frac{4}{5}, 0, \frac{3}{5}\right)=(0,1,0) .
$$

Instead of lying in a circle what if the curve lies in the surface of a sphere?
Lemma 17 If the image of the unit speed $\alpha: I \rightarrow \mathbb{R}^{n}$ lies within the surface of a sphere, then $\kappa(t) \neq 0$ and

$$
\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}=r^{2}
$$

where r is the radius of the sphere, $\rho(t)=1 / \kappa(t)$ and $\sigma(t)=1 / \tau(t)$.
Proof That α lies on the surface of a sphere means there is a point $\mathbf{c} \in \mathbb{R}^{n}$ and radius $r>0$ such that

$$
(\alpha(t)-\mathbf{c}) \bullet(\alpha(t)-\mathbf{c})=r^{2}
$$

for all $t \in I$. For simplicity I drop the dependency on t from my expressions.
The first differentiation gives $\alpha^{\prime} \bullet(\alpha-\mathbf{c})=0$, i.e.

$$
\begin{equation*}
T \bullet(\alpha-\mathbf{c})=0 . \tag{4}
\end{equation*}
$$

Differentiate again, $T^{\prime} \bullet(\alpha-\mathbf{c})+T \bullet T=0$ i.e. $\kappa N \bullet(\alpha-\mathbf{c})=-1$. Thus $\kappa \neq 0$ and

$$
\begin{equation*}
N \bullet(\alpha-\mathbf{c})=-\rho . \tag{5}
\end{equation*}
$$

Differentiate again, $N^{\prime} \bullet(\alpha-\mathbf{c})+N \bullet \alpha^{\prime}=-\rho^{\prime}$. But $N \bullet \alpha^{\prime}=N \bullet T=0$ while $N^{\prime}=-\kappa T+\tau B$. Thus $(-\kappa T+\tau B) \bullet(\alpha-\mathbf{c})=-\rho^{\prime}$. Yet, from above, $T \bullet(\alpha-\mathbf{c})=0$, so $\tau B \bullet(\alpha-\mathbf{c})=-\rho^{\prime}$, i.e.

$$
\begin{equation*}
B \bullet(\alpha-\mathbf{c})=-\sigma \rho^{\prime} . \tag{6}
\end{equation*}
$$

Since $\{T, N, B\}$ is a frame,

$$
\begin{aligned}
\alpha-\mathbf{c} & =((\alpha-\mathbf{c}) \bullet T) T+((\alpha-\mathbf{c}) \bullet N) N+((\alpha-\mathbf{c}) \bullet B) B \\
& =-\rho N-\sigma \rho^{\prime} B .
\end{aligned}
$$

by (4), (5) and (6). Returning to the definition of a sphere

$$
\begin{aligned}
r^{2} & =\left(-\rho N-\sigma \rho^{\prime} B\right) \bullet\left(-\rho N-\sigma \rho^{\prime} B\right) \\
& =\rho^{2} N \bullet N+\left(\sigma \rho^{\prime}\right)^{2} B \bullet B \\
& =\rho^{2}+\left(\sigma \rho^{\prime}\right)^{2} .
\end{aligned}
$$

Why are κ and τ of interest?
There are perhaps many answers to this question but I'm interested in the fact that a "unit speed curve is uniquely determined by the pair of functions $(\kappa(t), \tau(t))$, up to position in $\mathbb{R}^{3 \prime \prime}$.

The map between the same object in different positions is the following.
Definition $18 A \operatorname{map} \mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is an isometry if $\|\mathbf{F}(\mathbf{x})-\mathbf{F}(\mathbf{y})\|=$ $\|\mathbf{x}-\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$.

There are four basic isometries, reflection; glide reflection; rotation and translation Isometries are given by an affine map $\mathbf{x} \mapsto \mathbf{a}+A \mathbf{x}$, with $\mathbf{a} \in \mathbb{R}^{3}$ and 3×3 orthogonal matrix A, so $A^{T} A=I_{3}$. The uniqueness result is

Theorem 19 If $\alpha, \beta: I \rightarrow \mathbb{R}^{3}$ are unit speed curves with $\left(\kappa_{\alpha}(t), \tau_{\alpha}(t)\right)=$ $\left(\kappa_{\beta}(t), \tau_{\beta}(t)\right)$ for all $t \in I$ then there exists an isometry $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $\beta=\mathbf{F} \circ \alpha$.

Proof not given, but the isometry is constructed by mapping the Frenet Frame on α at time t to the Frenet Frame on β at the same time.

Example If a unit speed curve $\alpha: I \rightarrow \mathbb{R}^{3}$ has constant curvature and torsion then it is a helix of the form $\beta(s)=(a \cos (s / c), a \sin (s / c), b s / c)$ for some $a, b \in \mathbb{R}$.

Another fundamental result is one of existence .
Theorem 20 Given differentiable functions $\kappa(s)>0$ and $\tau(s), s \in I$, there exists a regular curve $\alpha: I \rightarrow \mathbb{R}^{3}$ such that s is the arc-length, $\kappa(s)$ is the curvature and $\tau(s)$ the torsion of α.

Proof not given, but involves the existence and uniqueness of ordinary differential equations.

Arbitrary Speed Curves

If $\alpha(t)$ is not of unit speed we can find the arc-length parameter $s(t)$ and $\beta(s)$ a unit speed curve satisfying $\beta(s(t))=\alpha(t)$.

Calculate $T_{\beta}(s), N_{\beta}(s), B_{\beta}(s), \kappa_{\beta}(s)$ and $\tau_{\beta}(s)$ for $\beta(s)$. Then $\left\{T_{\beta}(s), N_{\beta}(s), B_{\beta}(s)\right\}$ is a frame for β for all s.

Write $T(t)=T_{\beta}(s(t)), N(t)=N_{\beta}(s(t)), B(t)=B_{\beta}(s(t)), \kappa(t)=$ $\kappa_{\beta}(s(t))$ and $\tau(t)=\tau_{\beta}(s(t))$. Then $\{T(t), N(t), B(t)\}$ is a frame for α all t.

To see how this frame for α transforms as t varies,

$$
\frac{d}{d t} T(t)=\frac{d}{d s} T_{\beta}(s) \frac{d}{d t} s(t)=\kappa_{\beta}(s) N_{\beta}(s) v(t)=\kappa(t) N(t) v(t),
$$

having used the Frenet formula for unit speed curves, Theorem 12. And

$$
\begin{aligned}
\frac{d}{d t} N(t) & =\frac{d}{d s} N_{\beta}(s) \frac{d}{d t} s(t)=\left(-\kappa_{\beta}(s) T_{\beta}(s)+\tau_{\beta}(s) B_{\beta}(s)\right) v(t) \\
& =(-\kappa(t) T(t)+\tau(t) B(t)) v(t)
\end{aligned}
$$

Finally

$$
\frac{d}{d t} B(t)-\tau(t) N(t) v(t)
$$

So, for an arbitrary speed curve the Frenet formula become

$$
\begin{array}{lll}
T^{\prime}(t)= & \kappa(t) v(t) N(t), & \\
N^{\prime}(t)=-\kappa(t) v(t) T(t) & & +\tau(t) v(t) B(t), \\
B^{\prime}(t)= & -\tau(t) v(t) N(t) . &
\end{array}
$$

Calculations

When it comes to calculations we can quickly differentiate the given $\alpha(t)$ but how to use these derivatives to calculate the T, N, B, κ and τ ?

First

$$
\alpha^{\prime}(t)=\frac{d}{d s} \beta(s) \frac{d}{d t} s(t)=T_{\beta}(s(t)) v(t)=T(t) v(t) .
$$

Yet T is of unit length so $T=\alpha^{\prime}(t) /\left\|\alpha^{\prime}(t)\right\|$.
Continue differentiating

$$
\begin{aligned}
\alpha^{\prime \prime}(t) & =\frac{d}{d t} T_{\beta}(s(t)) v(t)+T(t) v^{\prime}(t) \\
& =\kappa_{\beta}(s(t)) N_{\beta}(s(t)) v^{2}(t)+T(t) v^{\prime}(t) \\
& =\kappa(t) N(t) v^{2}(t)+T(t) v^{\prime}(t) .
\end{aligned}
$$

This shows that the acceleration of $\alpha(t)$ has a tangential component, the $T(t) v^{\prime}(t)$ term, and a normal component proportional to the square of velocity and to the curvature of the curve..

Next, again dropping the dependency on t for ease of notation,

$$
\alpha^{\prime} \times \alpha^{\prime \prime}=(T v) \times\left(\kappa N v^{2}+T v^{\prime}\right)=\kappa v^{3} B,
$$

since $B=T \times N$ and $T \times T=0$. Yet B is of unit length so $B=\alpha^{\prime} \times$ $\alpha^{\prime \prime} /\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|$. And for the same reason, $\kappa v^{3}=\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|$, and thus

$$
\kappa=\frac{\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|}{\left\|\alpha^{\prime}\right\|^{3}} .
$$

Find N from $N=B \times T=\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \times \alpha^{\prime} /\left\|\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \times \alpha^{\prime}\right\|$.

For the final derivative we have

$$
\begin{aligned}
\alpha^{\prime \prime \prime} & =\left(\kappa v^{2}\right)^{\prime} N+\kappa v^{2} N^{\prime}+v^{\prime \prime} T+v^{\prime} T^{\prime} \\
& =\left(\kappa v^{2}\right)^{\prime} N+\kappa v^{2}(-\kappa v T+\tau v B)+v^{\prime \prime} T+v^{\prime} \kappa v N \\
& =\left(v^{\prime \prime}-\kappa^{2} v^{3}\right) T+\left(\left(\kappa v^{2}\right)^{\prime}+v^{\prime} \kappa v\right) N+\kappa \tau v^{3} B .
\end{aligned}
$$

We only need to know the coefficient of B here, since

$$
\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \bullet \alpha^{\prime \prime \prime}=\kappa^{2} \tau v^{6} .
$$

Hence

$$
\tau=\frac{\left\|\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \bullet \alpha^{\prime \prime \prime}\right\|}{\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|^{2}}
$$

since, from earlier, $\kappa v^{3}=\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|$.
Example 21 Find T, N, B, κ and τ for the curve

$$
\alpha(t)=(a \cos t, a \sin t, d \sin t),
$$

$t \in \mathbb{R}$.
Solution First $\alpha^{\prime}(t)=(-a \sin t, a \cos t, d \cos t)_{\alpha(t)}$ so $\left\|\alpha^{\prime}(t)\right\|=\left(a^{2}+d^{2} \cos ^{2} t\right)^{1 / 2}$.
Continuing,

$$
\begin{aligned}
\alpha^{\prime \prime}(t) & =(-a \cos t,-a \sin t,-d \sin t)_{\alpha(t)} \\
\alpha^{\prime \prime \prime}(t) & =(a \sin t,-a \cos t,-d \cos t)_{\alpha(t)} .
\end{aligned}
$$

Then $\alpha^{\prime} \times \alpha^{\prime \prime}=\left(0,-a d, a^{2}\right)_{\alpha(t)}$ and $\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|=a\left(a^{2}+d^{2}\right)^{1 / 2}$.
For N we need

$$
\begin{aligned}
\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \times \alpha^{\prime} & =\left(0,-a d, a^{2}\right)_{\alpha(t)} \times(-a \sin t, a \cos t, d \cos t)_{\alpha(t)} \\
& =\left(\left(-a d^{2}-a^{3}\right) \cos t,-a^{3} \sin t,-a^{2} d \sin t\right)_{\alpha(t)} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\left\|\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \times \alpha^{\prime}\right\|^{2} & =\left(a d^{2}+a^{3}\right)^{2} \cos ^{2} t+\left(a^{6}+a^{4} d^{2}\right) \sin ^{2} t \\
& =a^{2}\left(a^{2}+d^{2}\right)\left(\left(a^{2}+d^{2}\right) \cos ^{2} t+a^{2} \sin ^{2} t\right) \\
& =a^{2}\left(a^{2}+d^{2}\right)\left(a^{2}+d^{2} \cos ^{2} t\right) .
\end{aligned}
$$

Next, $\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \bullet \alpha^{\prime \prime \prime}=a^{2} d \cos t-a^{2} d \cos t=0$.
Putting these results together,

$$
\begin{gathered}
T=\frac{\alpha^{\prime}(t)}{\left\|\alpha^{\prime}(t)\right\|}=\frac{(-a \sin t, a \cos t, d \cos t)_{\alpha(t)}}{\left(a^{2}+d^{2} \cos ^{2} t\right)^{1 / 2}}, \\
N=\frac{\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \times \alpha^{\prime}}{\left\|\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \times \alpha^{\prime}\right\|}=\frac{\left(\left(-a d^{2}-a^{3}\right) \cos t,-a^{3} \sin t,-a^{2} d \sin t\right)_{\alpha(t)}}{a\left(a^{2}+d^{2}\right)^{1 / 2}\left(a^{2}+d^{2} \cos ^{2} t\right)^{1 / 2}}, \\
B=\frac{\alpha^{\prime} \times \alpha^{\prime \prime}}{\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|}=\frac{\left(0,-a d, a^{2}\right)_{\alpha(t)}}{a\left(a^{2}+d^{2}\right)^{1 / 2}}, \\
\kappa=\frac{\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|}{\left\|\alpha^{\prime}\right\|^{3}}=\frac{a\left(a^{2}+d^{2}\right)^{1 / 2}}{\left(a^{2}+d^{2} \cos ^{2} t\right)^{3 / 2}},
\end{gathered}
$$

and

$$
\tau=\frac{\left\|\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \bullet \alpha^{\prime \prime \prime}\right\|}{\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|^{2}}=0,
$$

i.e. the curve is planar. (By observation it lies in the plane $d y-a z=0$.) Finally

